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Abstract 

We explain panel and multivariate regressions for comparing trends in climate data sets. 

They impose minimal restrictions on the covariance matrix and can embed multiple linear 

comparisons, which is a convenience in applied work. We present applications comparing 

post-1979 modeled and observed temperature trends in the tropical lower- and mid-

troposphere. Results are sensitive to the sample length. In data spanning 1979 to 1999, 

observed trends are not significantly different from zero or from model projections. In data 

spanning 1979 to 2009 the observed trends are significant in some cases but tend to differ 

significantly from modeled trends. 
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1 Introduction 
 

Many issues of interest in climate analysis involve comparisons of trends across different data sets. This 

note explains regression-based methods that yield asymptotically valid parameter variances and 

covariances while providing a flexible testing framework. Obtaining linear trend coefficients is easy 

using ordinary least squares (OLS). Obtaining unbiased estimates of the parameter variances and 

covariances (collectively referred to as the covariance matrix) is more challenging, because the 

regression residuals may be autocorrelated within each panel, and both heteroskedastic (unequal 

variance) and correlated across panels. Regressions that use sequenced groups of time series observations 

are referred to as panel estimators (Davidson and MacKinnon 2002). They are convenient when panels 

are unbalanced, i.e. they do not all have the same numbers of observations, but they impose restrictions 

on the covariance matrix. A nonparametric method introduced by Vogelsang and Franses (2005) handles 

autocorrelation of unknown dimension, however it is only applicable to balanced panels.  

 

We explain both methods and the tradeoffs between them. In Section 3 we apply them to a comparison of 

model temperature projections and observations in the tropical troposphere. We test trend significance as 

well as model-data equivalence. For discussions of the importance of modeling and climatological 

measurement issues related to the tropical atmosphere see Karl et al. (2006) Santer et al. (2005, 2008) 

and Douglass et al. (2007).  

 

 

2 Methods 
 

2.1  Introduction: two-equation case 

 

We assume the data are stationary, though autocorrelated, upon detrending; in other words “trend 

stationary.” Suppose there are two series of interest, τ1y  and τ2y , where τ  = 1,…,T. Trends are fitted 

using: 

 

 ττ τ 1111 ubay ++=  (1) 

 

and  
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 ττ τ 2222 ubay ++= . (2) 

 

A student’s t test of slope equivalence is:  
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where ^ denotes an ordinary least squares estimate, 2~
is  (i=1,2) denotes an autocorrelation-robust 

variance estimator for ib̂ , and cov( 21
ˆ,ˆ bb ) is the estimated covariance between the trend terms.  

 

Karl et al. (2006) drew attention to an apparent discrepancy between observed and model-generated 

temperature trends in the tropical atmosphere. Douglass et al. (2007) tested surface-matched differences 

(see SI) using  
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where 1b̂  denotes the trend through model ensemble means, 2b̂  denotes the trend through observations 

and 1
~s  is the estimated standard error of 1b̂ . The test (4) incorrectly treats the observations as 

deterministic and assumes the model observations are independent across time. Santer et al. (2008) 

instead used 
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where ~ denotes a least-squares estimate and ir  denotes the first-order autoregressive (AR1) coefficient 

in series i. The ratio of AR1 terms is commonly referred to as an “effective degrees of freedom” 

adjustment (e.g. Santer et. al. 2000). Instead of a series providing T independent observations it is said to 

provide only )1/()1( ii rTr +−  independent observations. The resulting variance corresponds to an 

estimate obtained using an AR1 model, but is not equivalent to that derived from higher-order 

autocorrelation models. Also, it does not yield a correct )ˆ,ˆcov(2 21 bb  term  (see SI), which was missing 

in both (4) and (5) anyway. While detrended climate model projections may be uncorrelated with 

observations, the assumption of no covariance among trend coefficients implies models have no low-

frequency correspondence with observations in response to observed forcings, which seems overly 

pessimistic.  

 

 

2.2 Panel Regressions  
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Equation (3) can be obtained using a panel regression. Suppose the dependent variable is the stacked 

vector ),( 21
′yy , and we estimate the following equation: 
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)11( ′  denotes two stacked T-length vectors of ones. )10( ′  denotes a vector of T zeroes stacked on T 

ones. This is called an indicator or “dummy variable,” since it indicates (value=1) if the dependent 

variable is 
2

y . )( ′ττ  denotes a 2T-length vector consisting of two T-length time trends and )0( ′τ  is 

)( ′ττ  times )10( ′ . A test of 0ˆ
2 =d  in (6) can be shown to be equivalent to testing 21

ˆˆ bb =  (Kmenta 

1986, see SI). Hence the t-statistic on 2d̂  in equation (6) yields the test score (3).  

 

To generalize the framework further, suppose we are comparing m model-generated series and o 

observational series, making the total number of series N=m+o. Each source i yields TTi ≤ non-missing 

observations τiy  over the interval τ = 1,…,T. Define an indicator variable 0=τiobs  if the record is 

model-generated, and =1 if it is from an observational series. Denote the i-th vector as [ ]iTii yyy ,,1 K=′ . 

Stack these vectors into a single 1×NT  vector y as follows: 
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Stack the trend vector [ ]T,,1 K=′τ  N times to get the 1×NT  panel trend vector  
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The indicator, or dummy, variables are likewise stacked to form  
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where iobs  is ),,...,( 1
′

iTi obsobs . The regression equation is then written  

 

 edtdty ++×++= 3210 )( bbbb  (10) 
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where e is an 1×NT  residual vector with typical element τie . Note that all the “data” are on the left hand 

side, and the right hand side consists of dummy variables and trend terms.  

 

When 0=ijobs , ττ ddyi /  = 1b̂  and when 1=itobs , ττ ddyi /  yields )ˆˆ( 21 bb + . Thus a t statistic on 1b̂  

will test whether the model trend is zero and a test of the linear restriction 0ˆˆ
21 =+ bb  indicates the 

significance of the observed slope. The t statistic on 2b̂  tests whether the trend on observations differs 

significantly from the trend in models.  

 

Equation (10) can be extended further. Suppose observations come from two different systems, such as 

satellites and weather balloons. Define two different indicator variables: d1, which equals 1 if an 

observation is from either system 1 or 2, and d2 which equals 1 only if the observation is from system 2. 

The regression equation becomes: 

 

 edtddtdty ++×++×++= 2524131210 )()( bbbbbb  (11). 

 

The estimated model trend is 1b̂ . The trend in observations from system 1 is 21
ˆˆ bb +  and from system 2 is 

421
ˆˆˆ bbb ++ . The t statistic on 4b̂  tests whether the trend in the second observation system differs from 

that in the first, and so forth. 

 

Hypothesis testing requires a valid estimator of )(bV , the covariance matrix of b. The general form is 

(Davidson and MacKinnon 2002) 

 

 112 )()()ˆ()( −− ′Ω′′=−= XXXXXXbbb EV  (12). 

 

where X denotes the right hand side variables in (11) and )( ee ′=Ω E . Obtaining a valid estimate of Ω  

requires modeling the cross- and within-panel covariances. For a panel i with T observations, define a 

matrix Ai of autoregressive weights using the panel-specific AR1 coefficient iρ : 
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Then a model of Ω  can be written 
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where 
2
ijφ  denotes the covariance between series i and j, Ii denotes an identity matrix with dimension T, 

and 2
iσ  denotes the variance of series i. There are N(N-1)/2 covariances 

2
ijφ   in Equation (14) needing to 

be estimated, in addition to the variances and AR1 parameters. If some panels j are shorter than others 

( TT j < ) then the dimensions of the Ai matrices need to be adjusted accordingly. Some commercial 

statistical packages, like STATA, can accommodate unbalanced data sets.  

 

 

2.3 Higher-order autocorrelations and multivariate trend models 
 

Vogelsang and Franses  (2005, herein VF05) derived two estimators for Ω  that impose no parametric 

restrictions on the lag and correlation structure, as is done in (11). Suppose the N panels are used one-at-

a-time in Equation (1), yielding OLS trend estimates Nbb ˆ,...,ˆˆ
1=b . Take the N residual series ττ Nuu ,...,1  

and form the NT ×  matrix ],...,[ 1 ττ Nuu=U . VF05 derive two transformations of U that converge in 

probability to a scalar multiple of Ω . Of their two estimators we focus on the *
2F  form which has higher 

power and is slightly easier to compute. It is obtained as follows. Denote UV ′=  and take the columns 

jv , for j = 1,…, T, each of length N.  Define a vector ∑ =
=

τ

τ 1

ˆ
j jvS . Then VF05 show that  
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converges in probability to an unbiased estimate of Ω , regardless of the form of autocorrelation and 

other departures from the independence assumption. For testing purposes linear restrictions on the slopes 

can be written in the matrix form 0bR =ˆ  (see SI). The VF05 test statistic is 

 

 [ ] qF /ˆˆˆ 11*
2 bRRRbR

−− ′Ω= η  (16) 

 

where 2)( tt −Σ=η  and q is the number of restrictions, which in our examples always equals 1. Critical 

values for Equation (16) generated by Monte Carlo simulation are reported in VF05. 

 

The VF05 approach improves on the panel method by providing robust trend variances and covariances 

regardless of the autocorrelation order and the structure of heteroskedasticity. However it requires 

balanced panels, which can be a limitation in some cases.  

 

The VF05 statistic, as with all test statistics, has improved size as the sample size grows. Rejection 

probabilities also increase as 1→ρ . Monte Carlo simulations in VF05 show that for T= 100, when q=1 

and 8.0>ρ , just under 10% of *
2F  scores exceed the 95

th
 percentile, indicating a tendency to over-reject 

a true null, though this is an improvement compared to earlier alternatives. Each panel in our full sample 

has well over 100 observations, but a high ρ  value. Hence VF05 scores that are close to the critical 

values may overstate significance. 
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3 Empirical application  
 

3.1 Data 

We used the same archive of climate model simulations as Santer et al. (2008). The available group now 

includes 57 runs from 23 models. Each source provides data for both the lower troposphere (LT) and 

mid-troposphere (MT). Each model uses prescribed forcing inputs up to the end of the 20
th
 century 

climate experiment (20C3M, see Santer et al. 2005). Projections forward use the A1B emission scenario. 

Table 1 lists the models, the number of runs in each ensemble mean and other details. We used four 

observational temperature series: two satellite-borne microwave sounding unit (MSU)-derived series and 

two balloon-borne radiosonde series. We use monthly data starting in 1979, covering the tropics from 20 

degrees N to 20 degrees S. The MSU observations come from the University of Alabama-Huntsville 

(UAH, Spencer and Christy 1990) and Remote Sensing Systems Inc. (RSS, Mears et al 2003). The 

HadAT radiosonde series is an MSU-equivalent published on the Hadley Centre web site 

(http://hadobs.metoffice.com/hadat/msu_equivalents.html, Thorne et al. 2005). The Radiosonde 

Innovation Composite Homogenization (RICH) series is published by Haimberger et al. (2008) and is 

available at ftp://srvx6.img.univie.ac.at/pub/rich_gridded_2009.nc. We used the RICH gridded data and 

MSU-weights supplied by John Christy (pers. comm.) to construct MSU-equivalent series (see SI for 

details). 

 

Our data start in January 1979 and end in December 2009. Thus we have N=27 panels, each with 372 

monthly observations. Figure 1 displays the (smoothed) MSU series and the mean of the PCM model 

runs for comparison.  

 

Douglass et al. (2007) and Santer et al. (2008) focused on trends from 1979 to about 1999, with some 

series extending a few years further. To compare with these results we first look at data ending in 1999, 

and then extend the sample to 2009. Since our panels are balanced we can generate results using both the 

VF05 and panel regression methods, but since the results are so similar we report only the VF05 results 

for the shorter 1979-1999 sample.  

 

Table 1 summarizes the data. 1979-2009 trends in degrees C decade
-1

 are shown for the LT and MT 

levels, with accompanying standard errors, for all ensemble means and observational series. Each series 

was centered and the trend regression allowed for a six-lag autoregressive process, denoted AR6. Table 1 

(final column) shows that in 17 of the 23 models, and in all 4 observational series, autocorrelation at lags 

greater than one were observed in at least one atmospheric layer. Hence an AR1 error specification is 

likely inadequate. Extended autocorrelation lags were also observed in the individual model runs. 

 

All climate models were forced with 20
th
 century greenhouse gas and sulfate levels: other assumed 

forcings are listed in Table 1.  

 

 

3.2 Multivariate trend test results  

 

We weighted each model by the number of runs in its ensemble to adjust for the effect of combining runs 

into an average, though our conclusions would be unchanged if we weighted each model equally.  
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Table 2 presents tests of trend significance for the observational series. On data ending in 1999 the VF05 

test shows the four observational series are insignificant at both the LT and MT layers individually and 

averaged together (Column ‘Obs’). By extending the data to 2009 the *
2F  score of combined significance 

at the LT layer rises from 12.50 to 76.66, thus attaining significance at 5%. All observed LT series are 

individually significant, except UAH which is significant at 10%. At the MT layer, extending the sample 

raises the combined *
2F  score from 5.06 to 23.77, which is significant at 10%. UAH and Hadley series 

are insignificant, RICH is marginal and RSS is individually significant at 5%.  

 

Trend comparison results are in Table 3. The second column (“Obs”) shows that at both the LT and MT 

layers, on data ending in 1999 the difference between models and observations is only marginally 

significant, echoing the findings of Santer et al. (2008). But with the addition of another decade of data 

the results change, such that the differences between models and observations now exceed the 99% 

critical value. As shown in Table 1 and Section 3.3, the model trends are about twice as large as 

observations in the LT layer, and about four times as large in the MT layer.  

  

At both the LT and MT layers, on data ending in either 1999 or 2009, the VF05 tests show that the 

balloon data are not significantly different from the MSU data, but within the satellite category, the RSS 

and UAH data are significantly different. Possible reasons for RSS/UAH differences include treatment of 

intersatellite calibration, orbital decay and other processing issues (see, e.g., Santer et al. 2005, Christy 

and Norris 2009, Karl et al. 2006).  

 

3.3 Panel regressions tests 

 

In cases where one or more series is not of full length the VF05 test will not work. The panel-corrected 

standard error estimator in the STATA program (command xtpcse) allows an unbalanced panel in the 

estimate of Equation (11), however it imposes an AR1 assumption. For comparison purposes we report 

these results on data ending in 2009. We again weighted each observation by the number of runs in the 

ensemble mean. None of the conclusions depend on this step. 

 

In Table 2 the panel estimator at the LT layer shows that the observations as a group (column 2) exhibit a 

significant trend of 0.110 C decade
-1

, compared to a model trend (column 9) of 0.272 C decade
-1

. The 

balloon and MSU series are each jointly significant (p = 0.026 and 0.042 respectively). In the MT layer 

the model trend (0.253 C decade
-1

) remains significant. The mean observed trend is only 0.057 C decade
-

1
. The panel-estimated standard error implies it is insignificant (p=0.272) while the VF05 score implies 

significance at 10%. Among observational series only RSS is individually significant, echoing the VF05 

results. The MSU and balloon series are each jointly insignificant. Figures 2 and 3 show the trend 

magnitudes.  

 

In Table 3, the p values of the test scores on a hypothesis of equality between the indicated trends are 

shown in the bottom row. On data ending in 2009, the trend differences between models and observations 

(column 2) are significant in both the LT (p=0.002) and MT (p = 0.000) layers, as was the case with the 

VF05 tests. The model-observation difference is significant for all data products at both layers except for 

the RSS series in the LT layer (p=0.059).  
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In the final columns of Table 3 we test the differences among the observational series. As was the case 

with the VF05 tests, the balloons and MSU series are not significantly different from each other 

(p=0.880), but within the MSU category, the RSS and UAH series are significantly different (p=0.000).  

 

 

4 Discussion and conclusions 
 

Econometric tools are increasingly being used for climate data sets (see, e.g., Fomby and Vogelsang 

2002, Mills 2010). We present two econometric methods for trend comparisons between data sets. Both 

add flexibility for multivariate comparisons and provide improved treatment of complex error structures. 

The multivariate testing method of Vogelsang and Franses (2005) yields the more robust estimator of the 

covariance matrix, but requires balanced data panels. Panel regression methods can accommodate 

comparisons of series of unequal lengths, but software limitations typically limit treatment of within-

panel autocorrelation to the AR1 case. In our example the two methods yielded similar conclusions, 

indicating that the AR1 approximation in the panel model was likely not overly restrictive. In general, 

however, for the purpose of multivariate trend comparisons in climatology, we particularly recommend 

that the VF05 method enter the empirical toolkit.  

 

In our example on temperatures in the tropical troposphere, on data ending in 1999 we find the trend 

differences between models and observations are only marginally significant, partially confirming the 

view of Santer et al. (2008) against Douglass et al. (2007). The observed temperature trends themselves 

are statistically insignificant. Over the 1979 to 2009 interval, in the LT layer, observed trends are jointly 

significant and three of four data sets have individually significant trends. In the MT layer two of four 

data sets have individually significant trends and the trends are jointly insignificant or marginal 

depending on the test used. Over the interval 1979 to 2009, model-projected temperature trends are two 

to four times larger than observed trends in both the lower and mid-troposphere and the differences are 

statistically significant at the 99% level.  

 

Our methods assume trends are linear. We found no evidence for nonlinearity on the observed data, but 

some on modeled data in the MT. Also, the fact that the results are sensitive to the end date suggests that 

they might also be sensitive to the start date. Since the satellite data are unavailable prior to 1979 we 

cannot extend these series earlier. Interpretation of trend comparisons should therefore make reference to 

the time period analysed, which, ideally, should have some intrinsic interest. In this case the 1979-2009 

interval is a 31-year span during which the upward trend in surface data strongly suggests a climate-scale 

warming process. As noted in the studies cited in the introduction, comparing models to observations in 

the tropical troposphere is an important aspect of testing explanations of the origins of surface warming.  
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Figure 1: UAH (thin dashed) and RSS (thin solid) satellite series 1979:1 to 2008:9. Thick line: Model 21 

ensemble mean. Series smoothed using Hodrick-Prescott filter with smoothing parameter 200=λ . Top: 

lower troposphere LT, Bottom: mid-troposphere MT.  
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Figure 2: Modeled and estimated trends (1979-2009, C decade

-1
) in the tropics, lower troposphere (LT) 

layer 
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Figure 3: Modeled and estimated trends (1979-2009, C decade

-1
) in the tropics, mid-troposphere (MT) 

layer 
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Panel 

Model/ Obs 

Name 

Extra 

Forcings 

No.  

Runs 

LT Trend 

(Std Dev) 

MT Trend 

(Std Dev) 

AR Coeffs 

LT / MT 

1 BCCR BCM2.0 O 1  0.210** 

 (0.058) 

0.211** 

(0.053) 

1,2/ 1 

2 CCCMA3.1-T47 NA 5 0.363** 

(0.021) 

0.380** 

(0.020) 

1,2,3,5 / 1,3 

3 CCCMA3.1-T63 NA 1 0.419** 

(0.041) 

0.444** 

(0.039) 

1,6 / 1,6 

4 CNRM3.0 O 1 0.258** 

(0.085) 

0.326** 

(0.111) 

1,6 / 1,3,6 

5 CSIRO3.0  1 0.162* 

(0.083) 

0.30 

(0.083) 

1,3 / 1,3 

6 CSIRO3.5  1 0.305** 

(0.103) 

0.288** 

(0.109) 

1,2,6 / 1,2,6 

7 GFDL2.0 O, LU, 

SO, V 

1 0.229** 

(0.099) 

0.225** 

(0.104) 

1,6 / 1,6 

8 GFDL2.1 O, LU, 

SO, V 

1 0.188  

(0.115) 

0.193 

(0.126) 

1 / 1,4,5 

9 GISS_AOM  2 0.127 

(0.091) 

0.123 

(0.095) 

1 / 1 

10 GISS_EH O, LU, 

SO, V 

6 0.277** 

(0.047) 

0.261**  

(0.043) 

1 / 1 

11 GISS_ER O, LU, 

SO, V 

5 0.258** 

(0.065) 

0.230** 

(0.043) 

1,3,4,6 / 1,4 

12 IAP_FGOALS1.0  3 0.273* 

(0.037) 

0.259** 

(0.028) 

1 / 1 

13 ECHAM4  1 0.290** 

(0.033) 

0.270** 

(0.028) 

1,4 / 1 

14 INMCM3.0 SO, V 1 0.185** 

(0.076) 

0.186** 

(0.081) 

1,4,6 / 1,6 

15 IPSL_CM4  1 0.203** 

(0.077) 

0.202** 

(0.082) 

1,3,6 / 1,3,6 

16 MIROC3.2_T106 O, LU, 

SO, V 

1 0.100 

(0.078) 

0.102 

(0.084) 

1,6 /1,6 

17 MIROC3.2_T42 O, LU, 

SO, V 

3 0.280** 

(0..037) 

0.284** 

(0.039) 

1/1  

18 MPI2.3.2a SO,V 5 0.277** 

(0.060) 

0.232** 

(0.057) 

1,2 / 1,2,6 

19 ECHAM5 O 4 0.227** 

(0.044) 

0.224** 

(0.045) 

1 / 1 

20 CCSM3.0 O,SO,V 7 0.320** 

(0.050) 

0.285** 

(0.044) 

1 /1,6 
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21 PCM_B06.57 O, SO, 

V 

4 0.178* 

(0.043) 

0.142** 

(0.023) 

1,2,3 / 1,2 

22 HADCM3 O 1 0.204** 

(0.060) 

0.186** 

(0.063) 

1,2,4,6 /1,6 

23 HADGEM1 O, LU, 

SO, V 

1 0.258** 

(0.058) 

0.270** 

(0.056) 

1 /1  

24 UAH   0.070 

(0.058) 

0.040 

(0.062) 

1,2 /1,2 

25 RSS   0.157** 

(0.058) 

0.117* 

(0.065) 

1,2 / 1,2 

26 HadAT   0.097* 

(0.053) 

0.020 

(0.066) 

1,2 / 1,2 

27 RICH   0.114** 

(0.050) 

0.072 

(0.059) 

1,2 / 1,2 

Table 1: Summary of data series. Each row refers to model ensemble mean (rows 1—23) or 

observational series (rows 24—27). All models forced with 20
th
 century greenhouse gases and direct 

sulfate effects. Rows 10, 11, 19, 22 and 23 also include indirect sulfate effects. ‘Extra forcing’ column 

indicates which models included other forcings: ozone depletion (O), solar changes (SO), land use (LU), 

volcanic eruptions (V). NA: information not supplied to PCMDI. No. runs: indicates number of 

individual realizations in the ensemble mean. LT and MT trends based on linear regression allowing 6 

autoregressive terms. Std errors in brackets. * significant at 10%. ** significant at 5%. AR Coefs: the 

autoregressive lags that were significant (p<0.05) for LT / MT layers respectively.  

 



 16 

 

 

 Tests of Trend Significance 

 Obs MSU UAH RSS BAL HAD RICH Models 

LT         

VF Method         

1979-1999 *
2F  12.50  3.98 25.47*  7.85 15.79  

1979-2009 *
2F  76.66**  27.92* 118.79**  55.16**  93.12**  

 

Panel Method 

1979-2009 

        

Trend (
o
C/decade) 0.110** 0.120** 0.079 0.159**  0.105**    0.272** 

Std Error 0.050 0.059 0.060 0.058  0.047    0.013 

p 0.027 0.042 0.186 0.006  0.026    0.000 

         

MT         

VF Method         

1979-1999 *
2F  5.06  1.55 19.36  0.27 10.08  

1979-2009 *
2F  23.77*  6.21 62.96**  0.26  41.43*  

 

Panel Method 

1979-2009 

        

Trend (
o
C/decade) 0.057 0.079 0.041 0.117**  0.043    0.253** 

Std Error 0.051 0.057 0.056 0.057  0.049    0.012 

p 0.272 0.166 0.466 0.039  0.389    0.000 

Table 2: Trend significance tests using nonparametric covariance estimator on balanced panels and panel regression on 

unbalanced panels. VF Method: Shown are Vogelsang and Franses (2005) *
2F  test scores. 90% critical value is 20.14, 95% 

critical value is 41.53, 99% critical value is 83.96. Panel Method refers to panel regression results. Shown are: the trend in C 

decade
-1

, the standard error of the trend and the p value of a test of H0: trend=0. Top block: LT, or lower troposphere. Bottom 

block: MT or mid-troposphere. See text for discussion of column groupings. Headings: Obs=average of all observational series; 

MSU=combined satellite record; UAH=University of Alabama-Huntsville; RSS=Remote Sensing Systems; BAL=combined 

balloon (radiosonde) series; HAD=HadAT balloon series; RICH=Haimberger balloon series; Models=average of 23 ensemble 

means. * denotes significant at 10% level, ** denotes significant at 5% level. 
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 Tests of Difference from Models RSS vs BAL vs 

 Obs MSU UAH RSS BAL UAH MSU 

LT        

VF Method        

1979-1999 24.96*     1990.10** 4.51 

1979-2009 188.55**     399.85** 2.06 

Panel (p) 

1979-2009 

 

0.002** 

 

0.012** 

 

0.002** 

 

0.059* 

 

0.001** 

 

0.000** 

 

0.880 

 

MT 

       

VF Method        

1979-1999 35.48*     1203.37** 10.18 

1979-2009 257.67**     229.35** 13.91 

Panel (p) 

1979-2009 

 

0.000** 

 

0.003** 

 

0.000** 

 

0.019** 

 

0.000** 

 

0.000** 

 

0.243 

Table 3: Trend difference tests using nonparametric covariance estimator on balanced panels and panel regression on unbalanced 

panels. VF group results: Vogelsang and Franses (2005) F2 test scores, 90% critical value is 20.14, 95% critical value is 41.53, 

99% critical value is 83.96. Panel (p) refers to panel regression results. Shown are the p values of a test of whether indicated 

trend difference = 0. Top block: LT, or lower troposphere. Bottom block: MT or mid-troposphere. See text for discussion of 

column groupings. Headings: See Table 2 legend. * denotes significant at 10% level, ** denotes significant at 5% level. 

 

 


